If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+60x=54
We move all terms to the left:
6x^2+60x-(54)=0
a = 6; b = 60; c = -54;
Δ = b2-4ac
Δ = 602-4·6·(-54)
Δ = 4896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4896}=\sqrt{144*34}=\sqrt{144}*\sqrt{34}=12\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-12\sqrt{34}}{2*6}=\frac{-60-12\sqrt{34}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+12\sqrt{34}}{2*6}=\frac{-60+12\sqrt{34}}{12} $
| v+13=252 | | 5(-7x-7)=31-2x | | 14^x-38=0 | | 8x+10=9x+9 | | 19.00+5.50h=10.00+6.75 | | 6(m+2)=8m | | t-60=473 | | r=1/5=0.200 | | 4w11−w12=0 | | 13t+11=8t+28 | | 6(1+6n)=6 | | 932=r+274 | | 7x−(4)=17 | | 74=20+(3*x) | | k2=40/1 | | k2=40 | | 24=-6v+6(v+4) | | X=7x-18 | | (3/(2x))-(2/(3x))=(5/3) | | 16x²+1=3x | | 4=2w−4 | | -2(5g-8)=3g+3 | | b2=40 | | (3/2x)-(2/3x)=(5/3) | | g2=4/9 | | 4/7f=-16 | | v4− 2= 1 | | 12.8=2/y | | v/4− 2= 1 | | 5−2w=3 | | 3(x+5)=(6x+5)×2 | | 9x2–3x+2=0 |